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1. Introduction. In the course of a study of chemical lattice sums [1] the authors considered 
sums such as 

(1.1) E (-1)m 
k ( n2 + m2 + k2)-1/2 

the summation being over all non-zero integer triples. Such "sums" occur naturally in the study 
of crystal potentials. For example, (1.1) is meant to measure the potential at the origin of an 
infinite cubic crystal with unit Coulomb charges at each integer lattice point. As such the sum is 
considered to represent an electrochemical constant (Madelung's constant) for sodium chloride. 
An excellent account of such lattice sums can be found in Glasser and Zucker's recent survey [3]. 

The series in (1.1) is not absolutely convergent and hence its sum is not order independent. 
Various possible orders suggest themselves. The chemical literature is somewhat vague on this 
point. As discussed in [1], it is really only appropriate to consider rectangular sums. 

We shall consider alternating series of the form 

(1.2) 1_ ) mf Oi), 

where -m = (M1, M2,..., mN) ranges over NN, the N-fold product of non-negative integers, 
( Ml)m:= (- 1)r +m22+ +MN and f: NN -* R. For s: NN -- R, s(-n) is said to converge to a limit 
I as -n increases in NN if, given E > 0, there is an im in NN such that 

Is() - 11 < - whenevern > -M 

the notation n > mi or mi S n meaning that ni < mi for i = 1, 2,..., N. This is equivalent to 
convergence in the sense of Pringsheim, which requires that s(-n) -1 / as min ni -o oc. For 

1 <i<N 
discussion of various concepts of convergence, see [2], [4], [5], [6], [7] and the references therein. 
We shall show that the sum of (1.2) exists under appropriate conditions if it is defined as the limit 
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as n- increases in NN of 

(1.3) (-1)m m). 
O< mi < -n 

Our main result, Theorem 3.1, is a complete generalization to multiple series of the classical 
result due to Leibniz, according to which if { an } is a monotonic sequence of non-negative real 
numbers converging to zero, then the series Z?= (-1) na converges to s and its sequence of 
partial sums { sn } satisfies 

0 S 52m?1 ? 52m?3 ? s ? 52n?2 ? s for all m, n in N. 

Theorem 3.1 exhibits order relations between partial sums of the form (1.3) which hold when the 
function f is fully monotone (as defined in ? 2 below); and Lemma 3.1, which plays a key role in 
the proof of Theorem 3.1, gives precise bounds on the size of these partial sums and also on the 
difference between them and their limit when it exists (see (3.6) below). To our knowledge neither 
such order nor such bound results have been considered previously in more than one dimension. 
There are, however, results available guaranteeing the convergence of non-absolutely convergent 
multiple dimensional series. Hardy [4] derives a "bounded convergence" test based on Abel 
partial summation which can be used to establish convergence criteria for series like (1.2) (see 
also Moricz [6]). Bromwich [2, p. 97] discusses the 2-dimensional version of Hardy's result. Meyer 
[5] gives necessary and sufficient conditions for the "diagonal summability" of 2-dimensional 
monotonic alternating series. 

When f is the restriction of an N-times continuously differentiable function, a most satisfac- 
tory test involving partial derivatives is given by our Theorem 4.1 for the convergence of the 
alternating series (1.2). This theorem follows immediately from our Lemma 2.1 which has 
independent interest as a mean value estimate for general alternating sums. 

We prove all our results for N-dimensions. The interested reader will be able to provide much 
simpler arguments for the 2-dimensional case as indicated pictorially in ? 3 below. The 
3-dimensional case, which is of primary interest, is not substantially simpler than the general one. 
Our vector notation enables us to express N-dimensional results concisely. An explicit treatment 
of the series (1.1) and its 2-dimensional analogue is given in [1]. 

2. Preliminaries. Let N N z N P N N denote respectively the N-fold product of the non-nega- 
tive integers, the integers, the non-negative real numbers, and the real numbers. We denote by 1 
the vector in R N with every component 1, and by ej the vector with j th component 1 and every 
other component 0. For 

a = (a,, a2,..., aN), b (b1, b2,.. . , bN) in RN, 

we define 

la-I:= max laj1, a * b:= a1b, + a2b2 + ?+anb, a-b:= (a,bl, a2b2, ...,aNbN); 
1 < i< ti 

and for s = (SI, S2,.. ., SN) in ZN, we define 

( 1)s: = ( l) = (-1) s'2? +?SN 

A function f: N N R is said to be (N -) monotone (decreasing) if 

(2.1) E 1) Sf (-m + s-) > 
Isil1 
SE NN 

for all i- in N N. We shall say that f is fully monotone if f and all its coordinate restrictions are 
monotone. Then 1-monotonicity means that f(m) > f(m + 1) for m in N; 2-monotonicity 
requires that 
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f(m, n) +f(m + 1,n + 1) > f(m,n + 1) +f(m + 1, n) for m, n inN; 
and in general N-monotonicity of f requires the alternating sum (1.2) over any unit N-cube to 
have the same sign as (- l)F' at the corner nearest the origin. Note that any linear functional 'D 
on RN is N-monotone for N > 1, but 'D is fully monotone only if 'D < 0 on p N. 

We prove a lemma useful for obtaining criteria for monotonicity in which subscripts denote 
partial derivatives taken in order of the subscripts and 

:= {ZxE |x, > O for i=1, 2,. .., N}. 

LEMMA 2.1. (a) Let the function f: RN R have partial derivatives 112... N throughout IN. 
Then, for i- e aP*f aie 

(2.2) (a)s( )=()Naa2 ** aN2 N(C) 

IsIl" 
-(eNN Isl 

for some c between Zx and Zx + a. 

(b) Let the function 4: IPF R be N-times differentiable. Then, for x > 0, a- e N, 

(2.3) E (-1)5(+ a- s) ()aja2 ** aN+()c 
IsIl" 
1(e-NN 

for somecbetween xandx + a, + a2 + - +aN. 

Proof. (a) The result is true for N = 1. Suppose inductively that it is true with N - 1 in place 
of N. The left-hand side of (2.2) is evidently equal to 

Z (-1)sg(xl + als, X2 + a2S2,** XN-1 + aN-lSN-1) 

SeNN-1 

where g: pN-1 -aR is defined by 

g(0t:= f(tS XN) -f(t, XN + aN). 

Hence, by the inductive hypothesis and the mean value theorem, the left-hand side of (2.2) equals 

(_l)N 1aja2 
... 

aN-1912.. . N-1( C1 SC2 S * SCN-1) 

= (_,)N aja2 
... 

aNAi2.. . N ( Cl I C2, . ,CN) I 

where x, K c, ? xi + a, for i = 1, 2, ..., N. 

(b) Define f: IPN - R by f(t):= 4(tl + t2 + +tN). Then, with x:= (x, x,..., x)/N, 
we have 

f(x + as) = O(x + a - s); 
and (2.3) follows from (2.2). E 

The following lemma yields a stock of fully monotone functions. 

LEMMA 2.2. Let the function 4: P -1 R be continuous and satisfy 

(2.4) (-i)n4/n)(X) O forallx > 0 and n = 1,2,..., N. 

Then 

(a) for x > 0, ae NI 

(2.5) , (-15|4(x+ a * s) _ 0; 

s E G 
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(b) given non-decreasing functions g,: N -F N, i = 1, 2,. .., N, the function f: N N l1R defined 
by 

(2.6) AM 
( g,=1 ) 

is fully monotone on N N. 

Proof. (a) It follows from (2.3) that (2.5) holds for x > 0. By continuity it also holds for 
x = 0. 

(b) We have 
N N 

E (-i)f(mi + s) = E (_1)s4(Zg,(m,) + , si(g,(mi +-) - gi(m,)) > 0 

by part (a), since g,(m, + 1) - gi(m,) >? 0 and _1=Lg (mi) > 0. Thus f in N-monotone. Since 
the argument applies with some of the g, constant, it follows that f is in fact fully monotone. Cl 

EXAMPLE 2.1. (a) Let 
N l/p 

-mliilP:= E m,lP (P > O). 

Then 

(m: 11 +-_Mjj_q (q > O) 

is fully monotone, by Lemma 2.2(b) with 

+(x):= (N+ x) qlp 

and each g,(x):= (1 + x)P - 1. Note that with I Iiiij:= - the function f is still fully 
monotone for p = o0. 

(b) Similarly the functions 

f(mh):= -log( e )(a, > O) 

and 
N l1N 

f (-m): 
1 

(1+ mI) -1/N=- exp -N E log(l + Mj 
i=1N 

are fully monotone. O 

3. Alternating sums over rectangles. Before proceeding to the main results it is convenient to 
prove the following lemma. 

LEMMA 3.1. Letf: NN I_*FD be fully monotone. Then 

(3.1) 0S (-1)a E (-1)Mf(m) Kf(Aa) 

whenever a-, - e NN and ai S -n. 

Proof. It suffices to prove (3.1) for the case a-= 0, since the general case follows from this 
case with f(mi) replaced by f(mhi + ii). We establish the first inequality in (3.1) by induction. 
Clearly it holds for N= 1. Suppose it holds with N - 1 in place of N. Observe that, for 
n = (nl, n2,..., nN) E NN, 
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(_- )rnf(jjm) =SI + S2 

with 

SI:= . (_1)2k sf ()S(2k + -), 
O42k~in < 

S2 5 Y. E 
(-1) nf( ) 

i e E _mtj - ni 
0<iii 5, 

where E:= {iIni even), and ai: = (a1, a2, aN) with 

|nj-1 ifj<i,jE E and n.=*O, 
aj: n otherwise. 

Now S1 > 0 because of the N-monotonicity of f and S2 > 0 by the inductive hypothesis. The 
validity of the first inequality in (3.1) for every N > 1 follows. 

To establish the second inequality in (3.1), we observe that 

(1) ~if (m) -f (?) Y._ (-1)- __ (-)fm 
O< in O< s -mIn1 

s$0 

by the first inequality in (3.1). 0 

In what follows we use the notation: 

(3.2) t:= t(f):= (), 
0< m <n 

where m, in e N N. 

THEOREM 3.1 (Alternating series test). Iff: N N p is fully monotone, -i, r e NN and n < -r, 
then 

(i) t2i, > t2r > ? 0, 
(i)t2r+- >1 t2n + 1 >1 ?S 

(i)t2,-, >1 t2n +1- 

If in addition lim f(ne1) = 0 for i = 1,2,..., N, then tn converges to a limit t as -i increases, 

t2h >1 t > t2h+1 for each -n e N N, and consequently 
00 00 00 _ 

(3.3) t= E . E (-W)f(-m 
ml=O m2=O mN=O 

Proof. To establish (i) and (ii) it suffices to consider r:= -n + ej, 1 < j < N. We then have 

t2F - t2h E ( (-1);tf( m) with a-: = (2 n + 1)ej, 

and 

t2r+1 -t2h+1 = E (-1)mf(m) with b:= (2nj +2)ej 

Since (-1) = -1 and (-1) 1, (i) and (ii) follow by Lemma 3.1. Next, by an "inclusion- 
exclusion" counting argument, we have 

2t-1 _ 

t2- +i 1 -t2ii 
= - E ( -1) ( 1) -mf h), 

:_ 1 5i in < i +1 
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each da being of the form (a1, ? 2 aN) * 0 with every aj either 0 or 2nj + 1. Lemma 3.1 now 
yields (iii). 

It follows from (i) that t2h converges (to inf t2h) as -n increases in NN. Hence to establish 
TJNN 

the convergence of t. as -n increases in FNN, it suffices to show that, for fixed k in NN tn+k -tn 
0 as -n increases, and for this it is enough to consider k: = ej. We then have 

tii+k -ti = , ( -1);f f(-m) with c:= (ni + 1) ej , 

and hence, by Lemma 3.1, 

(3.4) |th+k -tii| <Af0c 

which tends to 0 as -n increases. 
Since f is fully monotone, an inductive argument shows that the sums implicit in (3.3) exist 

and that the identity holds. O 

The convergence conclusion also follows from Hardy's "bounded series" test which also 
requires full monotonicity without so naming it. Hardy's result, however, does not yield the 
alternation information expressed by (i), (ii) and (iii). 

To indicate the underlying geometric simplicity of our proof we show pictorially why (i), (ii) 
and (iii) hold in the two-dimensional case when - = (nl, n2) and -r = (n1 + 1, n2). 

2n2 + 1 + 

2112 El 

21 

2n1 +1 2n, + 2 2n, + 3 

t2r -t2 = F1 < 0; 

t2T+i -t2Ty+i = F2 > 0; 

t2+1 -t2ii = E1 + E2 -f (2 + 1) 

E1 < 0, E2 < 0. 

Here F; represents the sum over the enclosed rectangle and Ei the sum over the adjacent edge. 
The next theorem is a special case of Theorem 3.1. We use the notation: 

( 3 .5) tn: = tn (f ) = E (-1)Mf ( m), 

where s % NN and n E N. Observe that tn = tni- 
THEOREM 3.2. Iff: NN -3 p is fully monotone, then, for m, n E N, 

0 < t2m+l < t2m+3 < t2n+2 t2n- 

If in addition lim f(nei) = 0 for i = 1, 2,..., N, then tn converges to a limit t as n oo, and 
n -o 00 

t2,,1> t> t2,n+1for each n E N. 
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COROLLARY 3.3. For O < p oo, q > O, Jn E N, 

n: = E ( _1);ilpiijl-q 
1< mi <n 

converges as n increases. 

Proof. We have 

Si +1 (_1)NE (_,)m ||1 + -||l-q ~~~~~~~ 
O< mi < -n 

and Theorem 3.1 applied to Example 2.1 (a) yields the required convergence. O 

COROLLARY 3.4. For 0 < p K oo, q > 0, n E NN, 

-n < mi < ni 
miEZN\{O} 

converges as n increases. 

Proof. Observe that 
A N = 2NSN + R 

where R is the sum of a number of finite series each of the same general form as A N but of lower 
dimension. The desired result follows by induction. O 

Similarly we have: 

COROLLARY 3.5. For O < p < oo, q > 0, a E RNN, i E- JN, 

riZN\{?} 

converges as n increases. 

In particular Madelung's constant exists for any rectilinear lattice in RN if defined as 

mN (a-): = lim E )mI llaMl-12 
n - oo jiiij,n 

i E Z N\{O} 

By virtue of the underlying alternation it is easy to obtain a good error bound for t - t", when 
t, t, are as in Theorem 3.1. If f: NN -- R is fully monotone and t, converges to t as -n increases, 
then, letting -nO:= n and hi:= -n + ej for j = 1,2,. .., N, we have 

N N 

(3.6) It - t,,| < Itij+i -t,,| < E Itii - tTl ,| < E f((nj + 1)ej), 
j=1 I= 

on repeated application of (3.4). For the series in (1.1) the difference between 

m E Z N\{O} 

and the limit is at most N/(n + 1). Thus, to compute 15 digits of Madelung's constant for NaCl 
directly would appear to take around 1045 calculations! No wonder indirect transform techniques 
are used in practice [3]. Actually only a few digits seem to be used in applications. The NaCl 
crystal would have to be galaxy sized for a 15 digit approximation to have physical significance. 
This indicates the limited utility of using an infinite model for a finite crystal. 

By virtue of Example 2.1 (b) and Theorem 3.1, 
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1 < m < n i= 1 

converges as n increases in NN. This is the limiting case as p -O 0 of Corollary 3.3 with q = 1. In 
fact the sum is just 

L (_1) mM-1N 
m = 1 

More generally, in view of Lemma 2.2, Theorem 3.1 applies to f(ih):= H N 
1gi(mi) whenever 

each gi: N%1 - N decreases to zero. In this case, of course, 
_ N 

E (_l)MHgi(MJ) 
04-mvn i=l 

converges to 
N oo 

H E (-1)mgi(m) 
i= m=O 

as n increases in N N. 

4. A characterization involving partial derivatives. We define a function f: p N R to be 
(N-) monotone if 

(4.1) E(1) fx as) O 
sE=NN 

whenever x, a E pN* We shall say that f is fully monotone on P N if f and all its coordinate 
restrictions are monotone. Then Lemma 2.2 (b) has an obvious analogue. More importantly, we 
have the following characterization of full monotonicity on P N in which subscripts denote partial 
derivatives. 

THEOREM 4.1. Let f: p N -- R have continuous partial derivatives of order N. Then 
(a) f is monotone on pN if and only if (-')NfA2 N > 0, and 
(b) f is fully monotone on pN if and only if, for 1 < k < N, 

(4.2) (-1)j i2...ik > ? 

whenever il, i2,..., k are distinct integers in {1, 2,. . ., N}. 

Proof. (a) By Lemma 2.1 (a), for x E a- E pN 

(4.3) E(-1) (x +as)=() a1a2 ... 
aNi2.. N(0) 

where x < c < x + a-. In view of the continuity of f and f12... N on p N, conclusion (a) follows 
from (4.3). 

(b) This follows from (a) by consideration of coordinate restrictions. C1 

Note that (4.3) shows that if ( - )Nf12 N> 0 on p N, then f is strictly N-monotone. Further, 
since full monotonicity on p N implies full monotonicity on N N, (4.2) yields a simple test for full 
monotonicity on NN. Let RN:= {x E RlNIx > c} and say that f is N-monotone or fully 
monotone on R if f(x - c) is similarly monotone on RlaO = p N 

EXAMPLE 4.2. (a) Let f(x, y, z): = (x2 + y2 + Z2)-q for q > 0 and (x, y, z) E R3. Then 

f1= -2xq(x2+y2+z2) q <0, f2= 4xyq(q +1)(X2+y2+z2) q2 >0 
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and 

f123 = -8xyzq(q + 1)(q + 2)(x2 + Y2 + Z2)-q-3 < 0 

on R3. By symmetry this suffices to show that f is (strictly) fully monotone on R3. The 
N-dimensional case can be treated similarly, as can the function in Example 2.1 (a). 

(b) Consider the two-dimensional lattice sum 
00 

(4.4) E (_-1)m+n ((alm + bln)2 + (a2m+ b2 n)2) , 
m, n=1 

where q > 0 and a,, a2, bl, b2 are real numbers. This corresponds to summing over the cone of 
vectors of the form ma + nb for m > 1, n > 1, where d:= (a,, a2), b:= (bj, b2). Let 

A:= al + a22, B:= b + b2,C:= b = alb + a2b2, 

and 

D:= D(x, y) = (alx + b,y)2 + (a2x + b2y)2. 

Then f(x, y):= D-q(X, y) satisfies 

= -2q(Ax + Cy)D l, f2 = -2q(Cx + By)D-l, 

fi2= 4q(q + 1)(Ax + Cy)(Cx + By)D-q-2 - 2qCD-q-l 
- 2qD-q-2 ((2q + 1)( Ax2 + By2) C + 2xy(qC2 + (q + 1)AB)). 

We see that fi2 > Owhile fi < 0 and f2 < 0 on R2 if and only if C > 0. Thus f is fully 
monotone on R 2 if and only if the angle between a- and b is acute, and in this case the series in 
(4.4) converges in the sense of Theorem 3.1 or Theorem 3.2. C 
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